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Abstract. Set inversion is applied to recent collision-induced scattering data concerning
gaseous CE It makes it possible to approximate the set of all vectors of independent components
of the CK dipole—quadrupole and dipole—octopole polarizability tensors. Numerical analysis
shows that short-range effects must be taken into account in the high-frequency range of each
dipole—multipole contribution to the CIS isotropic spectrum ofsCH also demonstrates the
agreement between experiment and reeéminitio calculations.

1. Introduction

In low-density fluids, interactions between molecules are binary. Thus, collision-induced
light scattering (CIS) results from collisional polarizabilities of molecular pairs [1]. For
optically isotropic molecules such as £ pure collision-induced depolarized and isotropic
spectra are observed in the vicinity of the Rayleigh line, where no monomolecular scattering
is allowed [2]. These spectra provide information on molecular interactions and may be used
to estimate the origin-independent parameters of the dipole—multipole polarizability tensors
(e.g.A and E which characterize the dipole—quadrupole and dipole—octopole teAsarsl

FE of any tetrahedral molecule). For pairs of molecules that cannot be easily described in
terms of quantum mechanics, a semiclassical model may be considered [3]. In this case,
the CFK spectral intensity* can be written as follows [4, 5]:

IS (0) = I35 (@) + p g2 A% yr (@) + Eppa®E? Lyrg ()
+pa A AT A(@) + Eyrp A2E? Lare(0) + CorpE* ETE(@) + - - (1)

wherew denotes the frequency shift andis the main polarizability. The subscript DID
refers to the dipole-induced dipole interaction. SubsciysA, «TE, AT A, ATE and
ETE refer to the successive dipole—multipole light scattering mechanisms [4, 5]. The
coefficientsc® depend on the natureof the spectrum (depolarized or isotropic) and on the
dipole—multipole mechanisms [4, 5]. Unfortunately, point estimatiod afnd E is highly
uncertain due to the following four reasons:

(i) Short-range effects such as overlap and exchange effects are not taken into account
in the aforementioned semiclassical model. As a result, in thedabe, depolarized and
isotropic spectra lead to different conclusions. The isotropic spectrum has been shown to
be the more adapted [5].
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(ii) Because of the competition between the dipole—multipole mechanisms (su@hAs
and aT E) several different parameter vectors, (E) may correspond to similar fits, i.e.
the model is said to be almost unidentifiable.

(i) Errors on measurement of the isotropic spectrum are large [5] and many unsimilar
fits can be considered as consistent with all data.

(iv) The model is nonlinear (cf equation (1)) and local minimization procedures may
converge to any local minimum.

For all these reasons, a bounded-error estimation approach (see [6, 7] and references
therein) is considered in this work. It consists of characterizing theSsaft all values of
the vector(A, E) such that the associated model output is consistent with all experimental
data, i.e. goes through all error bars. The method to be used is new for most physicists and
is based on set inversion [8]. Set inversion, presented in section 2, is particularly suited in
our case because of the nonlinearities involved in the semiclassical model; intesesl
analysiswhich is a numerical tool for computing with sets (also presented in section 2).
Section 3 gives an approximation of the setf all feasible vectorgA, E) and compares
it with former estimations. We show that recett initio computations by Maroulis [9, 10]
partly confirm our results. Finally, we conclude on the advantages that set-inversion analysis
offers to spectroscopists.

2. Set inversion

Let f be a nonlinear continuous vector function mappRiginto R™ and let) be a subset
of R™. The set-inversion problem is to characterize theatefined by

X = {z|f(®) C V)= Q).

The set functionf~! is the reciprocal functionof f. The set-inversion algorithm to be
presented is based on interval arithmetic which is a numerical tool originally developed in
order to quantify the effect of finite-precision arithmetic on results obtained by a computer
[11]. Interval arithmetic extends classical operators on real numbers to intervals in a natural
way. Thus, if k] = [x~,x"]and [y] = [y, y'],

]+ =[x +y,x" +y7]

] =D =[x =y x" —y7]

[x] - [y] = [min(x ™y~ x 7y 2y 7y, maxx Ty~ a7y ay T oy )l

For example, we havgl, 2]+[—3, 4])-[—1, 5] = [-2, 6]-[—1, 5] = [—10, 30]. As another
example, let us consider the real functigix) = x? 4+ 2x + 4. An interval evaluation for

fis [f1(x]D = [x] - [x] + 2[x] + 4. For [x] =[-3, 4], we have:

[f1([-3,4]) =[-3.4] - [-3,4] + 2[-3,4] + 4 =[-12 16] + [-6, 8] + 4 = [—14, 28].

Note that the actual image by of the interval k], f([—3,4]) = [3, 28] is a subset of

the interval evaluationf]([—3, 4]) = [—14, 28]. This illustrates that interval evaluation is

usually pessimistic [11].
A box or vector interval[x] of R" is defined as the Cartesian productrointervals.

[2] = [x;, xf ] x -+ x [x,, xF]. @)
The ith component of the boxa] is an interval denoted byx|];. It can be proven (see
[11]) that the interval evaluationf([x]) = [ f]1([x]1, - - -, [x].) always contains the image

interval f([x]), i.e.

Viz], f([z]) c [f1(zD. ®)
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The width w([x]) of a box [] is the size of its largest side. For instance, the width of
the box [g] = [1, 2] x [—1, 3] is equal to 4. Aprincipal plane of [x] is a symmetry
plane of ] normal to a side of maximum length. Tamisecta box fr] means to cut it
along one of its principal planes. Bisecting][= [1, 2] x [—1, 3] produces two boxes
[z](D) =[1,2] x[-1,1] and [£](2) =[1, 2] x [1, 3].

The algorithm SIVIA (set inverter via interval analysis) partitions some prior box of
interest f£](0) into a set of non-overlapping boxes. For the sake of simplicity, it is assumed
that the sefy to be inverted is a boxyf]. SIVIA uses the following two tests to decide
whether a given boxaf] is inside or outside the solution sat:

) Vi, [fli(l=D c [yl = [x] ¢ X @
(i) A[fLid=D Nyl =9 = [x] N X = 4.
Proofs.

@) If vi, [f1:([=]) C [y];, then from (3)Vi, f;([x]) C [y];, i.e. f([z]) C [y]. Therefore
[z] C X.

@iy If [flix) N [y]: = 9, then from (3),3i|f;([x]) N [y]; = @. Therefore
fzh Nyl =0, ie. [xg] nX =0. (|

SIVIA is a recursive routine that brackets the solution &etbetween an inner and
outer set of boxes. For the sake of simplicity, it will be presented here in the case of a
two-dimensional solution set, but the algorithm readily extends to higher dimensions [8].
Boxes that have been proved to belongtovia test (i) are drawn in dark grey, those that
have been proved to be outsidevia test (ii) are drawn in light grey and those that satisfy
neither (i) nor (ii) and are too small to be bisected are drawn in white. The accaiacy

small positive real number.
SIVIA([ x])

Step 1.Vi, [ f1: ([x]) C [y]:, {dram[x], ‘darkgrey’); return;

Step 2.3i[[f1;([=]D N[y]: = ¥, {draw([z], ‘lightgrey’); returr};

Step 3. Ifw([x]) < ¢, {draw ([x], ‘white’); returry;

Step 4. Bisectf] and store the two resulting boxes into][1) and [c](2);
Step 5. SIVIA[z](1)); SIVIA([x](2)).

SIVIA is first called for [c]) = [«](0), where [£](0) is a box assumed to contain the
solution setX. If we denote byAX the union of all white boxes and by~ the union of
all dark grey boxes, then the solution s&tis bracketed by:

X CXCX UAX. ©)
Remark 1.When the box) to be inverted is a singletofy} (for example when dealing
with error-free data), the solution sét is often reduced to a singletde} which is easily

found by SIVIA or other punctual approaches. When two or more solutions exist, SIVIA
detects all of them in a guaranteed way, in contrast to punctual approaches.

Remark 2.Inversion methods generally considered are punctual: they try to find the best
fit. In a linear context, numerical instability appears when the matrix to be inverted is

almost non-invertible. With a set-inversion approach, the problem of instability does not

exist. Even if the model is non-identifiable (which corresponds to a situation where the
matrix is non-invertible in a punctual and a linear context), a set with a stretched shape is
obtained. All information about uncertainties (numerical, errors on measurementsre

given by X: if X is big, as in the application treated in the next section, the problem can

be considered as ‘ill-posed’ in a punctual point of view.
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Table 1. Experimental intensities of the GRsotropic spectrum versus frequency shifts together
with corresponding dipole—dipole and dipole—multipole theoretical contributions.

i 1 2 3 4 5 6 7 8 Units

w 50 60 70 80 90 100 110 120 crh

s 192 177 116 75 41 22 15 10 18 P

150 1732 1003 656 299 165 89 61 41 B8 cnf

DID 27.78 14.17 7.53 4.18 234 134 078 046 ~Tocnf

oT A 133.1 80.57 4455 2255 1047 453 187 077 “SBamP A
oTE 6.39 4.78 3.39 2.27 144 087 050 027 “enfA

ATA 1961 153.7  114.9 81.9 557 361 224 133 P A°
ATE 20.20 16.94 1373  10.74 812 593 419 286 ~fanf A ®
ETE 0.70 0.61 0.52 0.43 0.35 0.27 0.21 0.16 ~0cmf A%

3. Results and discussion

The experimental CFisotropic spectruni’s® reported in [5] had been recorded for a set of
Raman frequency shifts; relative to the green spectral ling;(= 5145 nm) of an argon
laser. Following the bounded-error approach, uncertainties on experimental data are assumed
to be bounded, i.e. thith ideal measuremerf*® (the measurement that should be obtained
if no measurement errors occurred) is assumed to belong to the intémg{l')[, 1539 ()]
provided in [5] and recalled in table 1.

As regards the theoretical spectrum, and according to equation (Zxhtheodel output
is given by

I°(A, E) = DID; 4+ a?A%aT A; + «?E?aTE; + A*AT A, + A’E?ATE; + E*ETE;.

(6)
The dipole—dipole and dipole-multipole components (DIB- 1,i§|°D (w)), aTA; =
2 alera(w;), etc) are provided in table 1 (see [5] for the details of their computation).

Since the value of the GFpolarizability is known ¢ = 2.93 A for Ap = 5145 nm [12]),
the unknown parameters areand E. Prior feasible intervals foA and E are given by

Ael0,2] and  Eel0,4] @)

where A and E are expressed id4 and A units, respectively. Table 2 shows how the
problem of estimatingd and E can be cast into the framework of set inversion.

In less tha 5 s on aPentium 100 Personal Computer, SIVIA brack&tas represented
in figure 1.

Because of some mechanism not taken into account in our semiclassical model, it may
occur that SIVIA eliminates a part of the parameter space that could contain the true values
of A and E. To protect against this, one would like to be especially careful about data
points that turn out to have a critical influence on the sizé& ofor this purpose, we define
the safety of the ith interval data by

Vol (S)
= o (8)
VO|(S,)
where Vol corresponds to the volume (an area in our two-dimensional casé) anthe set
of all parameters that are consistent with all data butithe The smaller the safety is, the

140
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Table 2. Translation table between the set-inversion formalism and the problem of estimating
the A and E values of Chk.

Set inversion Estimation oA and E

[BYf VSO SNG) _ ,

Y=yl (152 (D), Ingd(D] x - - X [I152(8), Iiax(8)]

T A, BT

fi(x) I"(A, E)

f (I'(A,E), ..., IL'(AENT _
X={z|f CY} S={A,EIViI"(A E)e[Ipn), I}
[x](0) [0,2] x [0, 4]

0.2 0 0.2 0.4 0.6 0.8 1 12 14 16 1.8

Figure 1. Set of A and E that are consistent with all data (dark-grey area) in theK) plane.
The units are inA% for A and inAS for E. The broken-edged rectangle corresponds to the
intervals for A and E provided in [5], the white cross represents the vector ) found by
Maroulis [9, 10], and the light-grey area is the set of forbidden parameter vectors.

more careful one must be with the corresponding data point. SIVIA can easily be adapted to
compute volumes of sets [8] and therefore the coefficigrnts. We obtainy (1) = y(3) =

y(5) = 1, which means that any of the associated data points can be removed without
changing the feasible domain fof, £). Moreover,y(2) = 0.98, y (4) = 0.98, y(6) = 0.93

andy (8) = 0.74. The safety of the eighth measurement is the smallest and the reliability of
the semiclassical model at the corresponding frequescy 120 cnt?! can be questioned.
After removing the eighth measurement, SIVIA brack&sas represented in figure 2. Note
that the upper boundary &g is not significantly different from that of, but the lower
boundary ofSg lies much lower.

In [5], an empirical estimation leads to the intervalss5[d.2] A" and [10, 3.5] A for
A and E, respectively. The corresponding rectangle, drawn with broken lines in figures 1
and 2, contains a large part of the solution seendSg. Moreover, the maximum values of
A and E given in [5] are very close to those provided here. The aforementioned rectangle,
however, also contains parameter vectors that are not consistent with the data. Finally,

note that the vectofA, E) = (0.97 A4, 1.15 ,&5), recently calculatedb initio by Maroulis
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0.2 0 0.2 0.4 0.6 0.8 1 1.2 14 16 18

Figure 2. Set of A and E that are consistent with the first seven pieces of data.

[9, 10] and represented by a white cross in figures 1 and 2, is located oStsidd deep

inside Sg. This corroborates the hypothesis that the eighth piece of data is not consistent
with the semiclassical model. The discrepancy may be due to short-range effects that take
place for high frequencies of each dipole—multipole contribution. When scattering data for
frequency shifts higher than 120 cfare considered, similar discrepancies can be observed
[5].

In conclusion, the set inversion approach, advocated here, makes it possible to estimate
unknown parameters, their uncertainties, as well as their correlations, when bounded-error
data and nonlinear models are involved. Such problems often arise in spectroscopy where
many efforts are focused on estimating physical coefficients from experimental data (e.g.
collision-induced scattering or absorption processes). The example of recent CIS studies on
gaseous CFis but one illustration of the advantages of set inversion over more conventional
methods.
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