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† Laboratoire d’Inǵenierie des Systèmes Automatiśes, Universit́e d’Angers, Facult́e des Sciences,
2 boulevard Lavoisier, 49045 Angers, France
‡ Laboratoire des Propriét́es Optiques des Matériaux et Applications, Université d’Angers,
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Abstract. Set inversion is applied to recent collision-induced scattering data concerning
gaseous CF4. It makes it possible to approximate the set of all vectors of independent components
of the CF4 dipole–quadrupole and dipole–octopole polarizability tensors. Numerical analysis
shows that short-range effects must be taken into account in the high-frequency range of each
dipole–multipole contribution to the CIS isotropic spectrum of CF4. It also demonstrates the
agreement between experiment and recentab initio calculations.

1. Introduction

In low-density fluids, interactions between molecules are binary. Thus, collision-induced
light scattering (CIS) results from collisional polarizabilities of molecular pairs [1]. For
optically isotropic molecules such as CF4, pure collision-induced depolarized and isotropic
spectra are observed in the vicinity of the Rayleigh line, where no monomolecular scattering
is allowed [2]. These spectra provide information on molecular interactions and may be used
to estimate the origin-independent parameters of the dipole–multipole polarizability tensors
(e.g.A andE which characterize the dipole–quadrupole and dipole–octopole tensorsA and
E of any tetrahedral molecule). For pairs of molecules that cannot be easily described in
terms of quantum mechanics, a semiclassical model may be considered [3]. In this case,
the CF4 spectral intensityI s can be written as follows [4, 5]:

I s(ω) = I sDID(ω)+ csαTAα2A2IαTA(ω)+ csαTEα2E2IαTE(ω)

+csATAA4IATA(ω)+ csATEA2E2IATE(ω)+ csETEE4IETE(ω)+ · · · (1)

whereω denotes the frequency shift andα is the main polarizability. The subscript DID
refers to the dipole-induced dipole interaction. SubscriptsαTA, αTE, ATA, ATE and
ETE refer to the successive dipole–multipole light scattering mechanisms [4, 5]. The
coefficientscs depend on the natures of the spectrum (depolarized or isotropic) and on the
dipole–multipole mechanisms [4, 5]. Unfortunately, point estimation ofA andE is highly
uncertain due to the following four reasons:

(i) Short-range effects such as overlap and exchange effects are not taken into account
in the aforementioned semiclassical model. As a result, in the CF4 case, depolarized and
isotropic spectra lead to different conclusions. The isotropic spectrum has been shown to
be the more adapted [5].
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(ii) Because of the competition between the dipole–multipole mechanisms (such asαTA
and αTE) several different parameter vectors (A, E) may correspond to similar fits, i.e.
the model is said to be almost unidentifiable.

(iii) Errors on measurement of the isotropic spectrum are large [5] and many unsimilar
fits can be considered as consistent with all data.

(iv) The model is nonlinear (cf equation (1)) and local minimization procedures may
converge to any local minimum.

For all these reasons, a bounded-error estimation approach (see [6, 7] and references
therein) is considered in this work. It consists of characterizing the setS of all values of
the vector(A,E) such that the associated model output is consistent with all experimental
data, i.e. goes through all error bars. The method to be used is new for most physicists and
is based on set inversion [8]. Set inversion, presented in section 2, is particularly suited in
our case because of the nonlinearities involved in the semiclassical model; it usesinterval
analysis which is a numerical tool for computing with sets (also presented in section 2).
Section 3 gives an approximation of the setS of all feasible vectors(A,E) and compares
it with former estimations. We show that recentab initio computations by Maroulis [9, 10]
partly confirm our results. Finally, we conclude on the advantages that set-inversion analysis
offers to spectroscopists.

2. Set inversion

Let f be a nonlinear continuous vector function mappingRn into Rm and letY be a subset
of Rm. The set-inversion problem is to characterize the setX defined by

X = {x|f(x) ⊂ Y} = f−1(Y).
The set functionf−1 is the reciprocal functionof f . The set-inversion algorithm to be
presented is based on interval arithmetic which is a numerical tool originally developed in
order to quantify the effect of finite-precision arithmetic on results obtained by a computer
[11]. Interval arithmetic extends classical operators on real numbers to intervals in a natural
way. Thus, if [x] = [x−, x+] and [y] = [y−, y+],

[x] + [y] = [x− + y−, x+ + y+]

[x] − [y] = [x− − y+, x+ − y−]

[x] · [y] = [min(x−y−, x−y+, x+y−, x+y+),max(x−y−, x−y+, x+y−, x+y+)].

For example, we have([1, 2]+[−3, 4])·[−1, 5] = [−2, 6]·[−1, 5] = [−10, 30]. As another
example, let us consider the real functionf (x) = x2 + 2x + 4. An interval evaluation for
f is [f ]([x]) = [x] · [x] + 2[x] + 4. For [x] = [−3, 4], we have:

[f ]([−3, 4]) = [−3, 4] · [−3, 4]+ 2[−3, 4]+ 4= [−12, 16]+ [−6, 8]+ 4= [−14, 28].

Note that the actual image byf of the interval [x], f ([−3, 4]) = [3, 28] is a subset of
the interval evaluation [f ]([−3, 4]) = [−14, 28]. This illustrates that interval evaluation is
usually pessimistic [11].

A box or vector interval [x] of Rn is defined as the Cartesian product ofn intervals.

[x] = [x−1 , x
+
1 ] × · · · × [x−n , x

+
n ]. (2)

The ith component of the box [x] is an interval denoted by [x]i . It can be proven (see
[11]) that the interval evaluation [f ]([x]) = [f ]([x]1, · · · , [x]n) always contains the image
interval f ([x]), i.e.

∀[x], f ([x]) ⊂ [f ]([x]). (3)



Light scattering data analysis via set inversion 7735

The width w([x]) of a box [x] is the size of its largest side. For instance, the width of
the box [x] = [1, 2] × [−1, 3] is equal to 4. Aprincipal plane of [x] is a symmetry
plane of [x] normal to a side of maximum length. Tobisect a box [x] means to cut it
along one of its principal planes. Bisecting [x] = [1, 2] × [−1, 3] produces two boxes
[x](1) = [1, 2]× [−1, 1] and [x](2) = [1, 2]× [1, 3].

The algorithm SIVIA (set inverter via interval analysis) partitions some prior box of
interest [x](0) into a set of non-overlapping boxes. For the sake of simplicity, it is assumed
that the setY to be inverted is a box [y]. SIVIA uses the following two tests to decide
whether a given box [x] is inside or outside the solution setX :

(i) ∀i, [f ]i ([x]) ⊂ [y]i ⇒ [x] ⊂ X
(ii) ∃i|[f ]i ([x]) ∩ [y]i = ∅ ⇒ [x] ∩ X = ∅. (4)

Proofs.
(i) If ∀i, [f ]i ([x]) ⊂ [y]i , then from (3),∀i, fi([x]) ⊂ [y]i , i.e.f([x]) ⊂ [y]. Therefore

[x] ⊂ X .
(ii) If ∃i|[f ]i ([x]) ∩ [y]i = ∅, then from (3), ∃i|fi([x]) ∩ [y]i = ∅. Therefore

f([x]) ∩ [y] = ∅, i.e. [x] ∩ X = ∅. �

SIVIA is a recursive routine that brackets the solution setX between an inner and
outer set of boxes. For the sake of simplicity, it will be presented here in the case of a
two-dimensional solution set, but the algorithm readily extends to higher dimensions [8].
Boxes that have been proved to belong toX via test (i) are drawn in dark grey, those that
have been proved to be outsideX via test (ii) are drawn in light grey and those that satisfy
neither (i) nor (ii) and are too small to be bisected are drawn in white. The accuracyε is a
small positive real number.

SIVIA([x])

Step 1.∀i, [f ]i ([x]) ⊂ [y]i , {draw([x], ‘darkgrey’); return};
Step 2.∃i|[f ]i ([x]) ∩ [y]i = ∅, {draw([x], ‘lightgrey’); return};
Step 3. Ifw([x]) < ε, {draw ([x], ‘white’); return};
Step 4. Bisect [x] and store the two resulting boxes into [x](1) and [x](2);
Step 5. SIVIA([x](1));SIVIA([x](2)).

SIVIA is first called for [x]) = [x](0), where [x](0) is a box assumed to contain the
solution setX . If we denote by1X the union of all white boxes and byX− the union of
all dark grey boxes, then the solution setX is bracketed by:

X− ⊂ X ⊂ X− ∪1X . (5)

Remark 1.When the boxY to be inverted is a singleton{y} (for example when dealing
with error-free data), the solution setX is often reduced to a singleton{x} which is easily
found by SIVIA or other punctual approaches. When two or more solutions exist, SIVIA
detects all of them in a guaranteed way, in contrast to punctual approaches.

Remark 2.Inversion methods generally considered are punctual: they try to find the best
fit. In a linear context, numerical instability appears when the matrix to be inverted is
almost non-invertible. With a set-inversion approach, the problem of instability does not
exist. Even if the model is non-identifiable (which corresponds to a situation where the
matrix is non-invertible in a punctual and a linear context), a set with a stretched shape is
obtained. All information about uncertainties (numerical, errors on measurements,. . . ) are
given byX : if X is big, as in the application treated in the next section, the problem can
be considered as ‘ill-posed’ in a punctual point of view.
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Table 1. Experimental intensities of the CF4 isotropic spectrum versus frequency shifts together
with corresponding dipole–dipole and dipole–multipole theoretical contributions.

i 1 2 3 4 5 6 7 8 Units

ω 50 60 70 80 90 100 110 120 cm−1

I iso
min 192 177 116 75 41 22 15 10 10−58 cm6

I iso
max 1732 1003 656 299 165 89 61 41 10−58 cm6

DID 27.78 14.17 7.53 4.18 2.34 1.34 0.78 0.46 10−58 cm6

αTA 133.1 80.57 44.55 22.55 10.47 4.53 1.87 0.77 10−58 cm6 Å
−14

αTE 6.39 4.78 3.39 2.27 1.44 0.87 0.50 0.27 10−58 cm6 Å
−16

ATA 196.1 153.7 114.9 81.9 55.7 36.1 22.4 13.3 10−60 cm6 Å
−16

ATE 20.20 16.94 13.73 10.74 8.12 5.93 4.19 2.86 10−60 cm6 Å
−18

ETE 0.70 0.61 0.52 0.43 0.35 0.27 0.21 0.16 10−60 cm6 Å
−20

3. Results and discussion

The experimental CF4 isotropic spectrumI iso reported in [5] had been recorded for a set of
Raman frequency shiftsωi relative to the green spectral line (λL = 514.5 nm) of an argon
laser. Following the bounded-error approach, uncertainties on experimental data are assumed
to be bounded, i.e. theith ideal measurementI iso

i (the measurement that should be obtained
if no measurement errors occurred) is assumed to belong to the interval [I iso

min(i), I
iso
max(i)]

provided in [5] and recalled in table 1.
As regards the theoretical spectrum, and according to equation (1), theith model output

is given by

I iso
i (A,E) = DIDi + α2A2αTAi + α2E2αTEi + A4ATAi + A2E2ATEi + E4ETEi .

(6)

The dipole–dipole and dipole–multipole components (DIDi = I iso
DID(ωi), αTAi =

ciso
αTAIαTA(ωi), etc) are provided in table 1 (see [5] for the details of their computation).

Since the value of the CF4 polarizability is known (α = 2.93 Å
3

for λL = 514.5 nm [12]),
the unknown parameters areA andE. Prior feasible intervals forA andE are given by

A ∈ [0, 2] and E ∈ [0, 4] (7)

whereA andE are expressed in̊A4 and Å5 units, respectively. Table 2 shows how the
problem of estimatingA andE can be cast into the framework of set inversion.

In less than 5 s on aPentium 100 Personal Computer, SIVIA bracketsS as represented
in figure 1.

Because of some mechanism not taken into account in our semiclassical model, it may
occur that SIVIA eliminates a part of the parameter space that could contain the true values
of A andE. To protect against this, one would like to be especially careful about data
points that turn out to have a critical influence on the size ofS. For this purpose, we define
the safetyof the ith interval data by

γ (i) = Vol(S)
Vol(Si )

(8)

where Vol corresponds to the volume (an area in our two-dimensional case) andSi is the set
of all parameters that are consistent with all data but theith. The smaller the safety is, the
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Table 2. Translation table between the set-inversion formalism and the problem of estimating
theA andE values of CF4.

Set inversion Estimation ofA andE

[y]i [I iso
min(i), I

iso
max(i)]

Y = [y] [I iso
min(1), I

iso
max(1)] × · · · × [I iso

min(8), I
iso
max(8)]

x (A,E)T

fi(x) Imi (A,E)

f (Im1 (A,E), . . . , I
m
8 (A,E))

T

X = {x|f ⊂ Y} S = {(A,E)|∀i, Imi (A,E) ∈ [I iso
min(i), I

iso
max(i)]}

[x](0) [0, 2]× [0, 4]
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Figure 1. Set ofA andE that are consistent with all data (dark-grey area) in the (A,E) plane.
The units are inÅ4 for A and in Å5 for E. The broken-edged rectangle corresponds to the
intervals forA andE provided in [5], the white cross represents the vector (A,E) found by
Maroulis [9, 10], and the light-grey area is the set of forbidden parameter vectors.

more careful one must be with the corresponding data point. SIVIA can easily be adapted to
compute volumes of sets [8] and therefore the coefficientsγ (i). We obtainγ (1) = γ (3) =
γ (5) = 1, which means that any of the associated data points can be removed without
changing the feasible domain for(A,E). Moreover,γ (2) = 0.98, γ (4) = 0.98, γ (6) = 0.93
andγ (8) = 0.74. The safety of the eighth measurement is the smallest and the reliability of
the semiclassical model at the corresponding frequencyω8 = 120 cm−1 can be questioned.
After removing the eighth measurement, SIVIA bracketsS8 as represented in figure 2. Note
that the upper boundary ofS8 is not significantly different from that ofS, but the lower
boundary ofS8 lies much lower.

In [5], an empirical estimation leads to the intervals [0.5, 1.2] Å
4

and [1.0, 3.5] Å
5

for
A andE, respectively. The corresponding rectangle, drawn with broken lines in figures 1
and 2, contains a large part of the solution setsS andS8. Moreover, the maximum values of
A andE given in [5] are very close to those provided here. The aforementioned rectangle,
however, also contains parameter vectors that are not consistent with the data. Finally,

note that the vector(A,E) = (0.97 Å
4
, 1.15 Å

5
), recently calculatedab initio by Maroulis
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Figure 2. Set ofA andE that are consistent with the first seven pieces of data.

[9, 10] and represented by a white cross in figures 1 and 2, is located outsideS and deep
insideS8. This corroborates the hypothesis that the eighth piece of data is not consistent
with the semiclassical model. The discrepancy may be due to short-range effects that take
place for high frequencies of each dipole–multipole contribution. When scattering data for
frequency shifts higher than 120 cm−1 are considered, similar discrepancies can be observed
[5].

In conclusion, the set inversion approach, advocated here, makes it possible to estimate
unknown parameters, their uncertainties, as well as their correlations, when bounded-error
data and nonlinear models are involved. Such problems often arise in spectroscopy where
many efforts are focused on estimating physical coefficients from experimental data (e.g.
collision-induced scattering or absorption processes). The example of recent CIS studies on
gaseous CF4 is but one illustration of the advantages of set inversion over more conventional
methods.
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